Step-by-step procedure to set up Llama 3.1 using TensorFlow Serving for a chatbot
Prerequisites
- TensorFlow Serving: Install TensorFlow Serving on your server or cloud platform. You can use a Docker container or install it from source.
- Llama 3.1 model: Download the Llama 3.1 model weights from the Meta AI website.
- Python: Install Python 3.7 or later on your server or cloud platform.
- TensorFlow: Install TensorFlow 2.4 or later on your server or cloud platform.
- Docker (optional): Install Docker on your server or cloud platform to use a containerized TensorFlow Serving setup.
Step 1: Prepare the Llama 3.1 model
- Download the Llama 3.1 model weights from the Meta AI website.
- Extract the model weights to a directory on your server or cloud platform, e.g.,
/models/llama_3_1. - Create a
model_config.jsonfile in the same directory with the following content:
{
“model_name”: “llama_3_1”,
“model_type”: “transformer”,
“num_layers”: 12,
“hidden_size”: 768,
“num_heads”: 12,
“vocab_size”: 32000
}
Chatbot AI and Voice AI | Ads by QUE.com - Boost your Marketing. Step 2: Create a TensorFlow Serving model
- Create a new directory for your TensorFlow Serving model, e.g.,
/models/tfserving_llama_3_1. - Copy the
model_config.jsonfile from the previous step into this directory. - Create a
model.pyfile in this directory with the following content:
import tensorflow as tf
def llama_3_1_model(input_ids, attention_mask):
# Load the pre-trained Llama 3.1 model
model = tf.keras.models.load_model(‘/models/llama_3_1/model_weights.h5’)
# Create a new input layer for the model
input_layer = tf.keras.layers.Input(shape=(input_ids.shape[1],), name='input_ids')
attention_mask_layer = tf.keras.layers.Input(shape=(attention_mask.shape[1],), name='attention_mask')
# Create a new output layer for the model
output_layer = model(input_layer, attention_mask=attention_mask_layer)
# Create a new model with the input and output layers
model = tf.keras.Model(inputs=[input_layer, attention_mask_layer], outputs=output_layer)
return model
Step 3: Compile the TensorFlow Serving model
- Run the following command to compile the TensorFlow Serving model:
tensorflow_model_server –port=8501 –rest_api_port=8502 –model_config_file=model_config.json –model_base_path=/models/tfserving_llama_3_1
Step 4: Start the TensorFlow Serving server
- Run the following command to start the TensorFlow Serving server:
tensorflow_model_server –port=8501 –rest_api_port=8502 –model_config_file=model_config.json –model_base_path=/models/tfserving_llama_3_1
Step 5: Test the TensorFlow Serving model
- Use a tool like
curlto test the TensorFlow Serving model:
curl -X POST -H “Content-Type: application/json” -d ‘{“input_ids”: [1, 2, 3], “attention_mask”: [1, 1, 1]}’ http://localhost:8501/v1/models/llama_3_1:predict
This should return a response with the predicted output.
Step 6: Integrate with your chatbot
- Use a programming language like Python to create a chatbot that sends input to the TensorFlow Serving model and receives the predicted output.
- Use a library like
requeststo send HTTP requests to the TensorFlow Serving model.
Here’s an example Python code snippet that demonstrates how to integrate with the TensorFlow Serving model:
import requests
def get_response(input_text):
input_ids = [1, 2, 3] # Replace with actual input IDs
attention_mask = [1, 1, 1] # Replace with actual attention mask
payload = {'input_ids': input_ids, 'attention_mask': attention_mask}
response = requests.post('http://localhost:8501/v1/models/llama_3_1:predict', json=payload)
return response.json()
input_text = “Hello, how are you?”
response = get_response(input_text)
print(response)
This code snippet sends the input text to the TensorFlow Serving model and prints the predicted output.
That’s it! You’ve successfully set up Llama 3.1 using TensorFlow
Discover more from QUE.com
Subscribe to get the latest posts sent to your email.


